Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

How chip size impacts steam pretreatment effectiveness for biological conversion of poplar wood into fermentable sugars.

Identifieur interne : 001D08 ( Main/Exploration ); précédent : 001D07; suivant : 001D09

How chip size impacts steam pretreatment effectiveness for biological conversion of poplar wood into fermentable sugars.

Auteurs : Jaclyn D. Demartini [États-Unis] ; Marcus Foston [États-Unis] ; Xianzhi Meng [États-Unis] ; Seokwon Jung [États-Unis] ; Rajeev Kumar [États-Unis] ; Arthur J. Ragauskas [États-Unis] ; Charles E. Wyman [États-Unis]

Source :

RBID : pubmed:26664502

Abstract

BACKGROUND

Woody biomass is highly recalcitrant to enzymatic sugar release and often requires significant size reduction and severe pretreatments to achieve economically viable sugar yields in biological production of sustainable fuels and chemicals. However, because mechanical size reduction of woody biomass can consume significant amounts of energy, it is desirable to minimize size reduction and instead pretreat larger wood chips prior to biological conversion. To date, however, most laboratory research has been performed on materials that are significantly smaller than applicable in a commercial setting. As a result, there is a limited understanding of the effects that larger biomass particle size has on the effectiveness of steam explosion pretreatment and subsequent enzymatic hydrolysis of wood chips.

RESULTS

To address these concerns, novel downscaled analysis and high throughput pretreatment and hydrolysis (HTPH) were applied to examine whether differences exist in the composition and digestibility within a single pretreated wood chip due to heterogeneous pretreatment across its thickness. Heat transfer modeling, Simons' stain testing, magnetic resonance imaging (MRI), and scanning electron microscopy (SEM) were applied to probe the effects of pretreatment within and between pretreated wood samples to shed light on potential causes of variation, pointing to enzyme accessibility (i.e., pore size) distribution being a key factor dictating enzyme digestibility in these samples. Application of these techniques demonstrated that the effectiveness of pretreatment of Populus tremuloides can vary substantially over the chip thickness at short pretreatment times, resulting in spatial digestibility effects and overall lower sugar yields in subsequent enzymatic hydrolysis.

CONCLUSIONS

These results indicate that rapid decompression pretreatments (e.g., steam explosion) that specifically alter accessibility at lower temperature conditions are well suited for larger wood chips due to the non-uniformity in temperature and digestibility profiles that can result from high temperature and short pretreatment times. Furthermore, this study also demonstrated that wood chips were hydrated primarily through the natural pore structure during pretreatment, suggesting that preserving the natural grain and transport systems in wood during storage and chipping processes could likely promote pretreatment efficacy and uniformity.


DOI: 10.1186/s13068-015-0373-1
PubMed: 26664502
PubMed Central: PMC4673720


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">How chip size impacts steam pretreatment effectiveness for biological conversion of poplar wood into fermentable sugars.</title>
<author>
<name sortKey="Demartini, Jaclyn D" sort="Demartini, Jaclyn D" uniqKey="Demartini J" first="Jaclyn D" last="Demartini">Jaclyn D. Demartini</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92507 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California, Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; DuPont Industrial Biosciences, 925 Page Mill Road, Palo Alto, CA 94303 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92507 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California, Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; DuPont Industrial Biosciences, 925 Page Mill Road, Palo Alto</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Foston, Marcus" sort="Foston, Marcus" uniqKey="Foston M" first="Marcus" last="Foston">Marcus Foston</name>
<affiliation wicri:level="2">
<nlm:affiliation>BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, 500 10th St., Atlanta, GA 30332 USA ; Department of Energy, Environmental and Chemical Engineering, Washington University, 1 Brookings Drive, Saint Louis, MO 63130 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
<wicri:cityArea>BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, 500 10th St., Atlanta, GA 30332 USA ; Department of Energy, Environmental and Chemical Engineering, Washington University, 1 Brookings Drive, Saint Louis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Meng, Xianzhi" sort="Meng, Xianzhi" uniqKey="Meng X" first="Xianzhi" last="Meng">Xianzhi Meng</name>
<affiliation wicri:level="2">
<nlm:affiliation>BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, 500 10th St., Atlanta, GA 30332 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<wicri:cityArea>BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, 500 10th St., Atlanta</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Jung, Seokwon" sort="Jung, Seokwon" uniqKey="Jung S" first="Seokwon" last="Jung">Seokwon Jung</name>
<affiliation wicri:level="2">
<nlm:affiliation>BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, 500 10th St., Atlanta, GA 30332 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<wicri:cityArea>BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, 500 10th St., Atlanta</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kumar, Rajeev" sort="Kumar, Rajeev" uniqKey="Kumar R" first="Rajeev" last="Kumar">Rajeev Kumar</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92507 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California, Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92507 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California, Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ragauskas, Arthur J" sort="Ragauskas, Arthur J" uniqKey="Ragauskas A" first="Arthur J" last="Ragauskas">Arthur J. Ragauskas</name>
<affiliation wicri:level="2">
<nlm:affiliation>BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; Department of Chemical and Biomolecular Engineering, Center for Renewable Carbon, University of Tennessee, Knoxville, TN 37996-2200 USA ; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee, Knoxville, TN 37996-2200 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; Department of Chemical and Biomolecular Engineering, Center for Renewable Carbon, University of Tennessee, Knoxville, TN 37996-2200 USA ; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee, Knoxville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wyman, Charles E" sort="Wyman, Charles E" uniqKey="Wyman C" first="Charles E" last="Wyman">Charles E. Wyman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92507 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California, Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92507 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California, Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26664502</idno>
<idno type="pmid">26664502</idno>
<idno type="doi">10.1186/s13068-015-0373-1</idno>
<idno type="pmc">PMC4673720</idno>
<idno type="wicri:Area/Main/Corpus">001A03</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A03</idno>
<idno type="wicri:Area/Main/Curation">001A03</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001A03</idno>
<idno type="wicri:Area/Main/Exploration">001A03</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">How chip size impacts steam pretreatment effectiveness for biological conversion of poplar wood into fermentable sugars.</title>
<author>
<name sortKey="Demartini, Jaclyn D" sort="Demartini, Jaclyn D" uniqKey="Demartini J" first="Jaclyn D" last="Demartini">Jaclyn D. Demartini</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92507 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California, Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; DuPont Industrial Biosciences, 925 Page Mill Road, Palo Alto, CA 94303 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92507 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California, Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; DuPont Industrial Biosciences, 925 Page Mill Road, Palo Alto</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Foston, Marcus" sort="Foston, Marcus" uniqKey="Foston M" first="Marcus" last="Foston">Marcus Foston</name>
<affiliation wicri:level="2">
<nlm:affiliation>BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, 500 10th St., Atlanta, GA 30332 USA ; Department of Energy, Environmental and Chemical Engineering, Washington University, 1 Brookings Drive, Saint Louis, MO 63130 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
<wicri:cityArea>BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, 500 10th St., Atlanta, GA 30332 USA ; Department of Energy, Environmental and Chemical Engineering, Washington University, 1 Brookings Drive, Saint Louis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Meng, Xianzhi" sort="Meng, Xianzhi" uniqKey="Meng X" first="Xianzhi" last="Meng">Xianzhi Meng</name>
<affiliation wicri:level="2">
<nlm:affiliation>BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, 500 10th St., Atlanta, GA 30332 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<wicri:cityArea>BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, 500 10th St., Atlanta</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Jung, Seokwon" sort="Jung, Seokwon" uniqKey="Jung S" first="Seokwon" last="Jung">Seokwon Jung</name>
<affiliation wicri:level="2">
<nlm:affiliation>BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, 500 10th St., Atlanta, GA 30332 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<wicri:cityArea>BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, 500 10th St., Atlanta</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kumar, Rajeev" sort="Kumar, Rajeev" uniqKey="Kumar R" first="Rajeev" last="Kumar">Rajeev Kumar</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92507 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California, Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92507 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California, Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ragauskas, Arthur J" sort="Ragauskas, Arthur J" uniqKey="Ragauskas A" first="Arthur J" last="Ragauskas">Arthur J. Ragauskas</name>
<affiliation wicri:level="2">
<nlm:affiliation>BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; Department of Chemical and Biomolecular Engineering, Center for Renewable Carbon, University of Tennessee, Knoxville, TN 37996-2200 USA ; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee, Knoxville, TN 37996-2200 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; Department of Chemical and Biomolecular Engineering, Center for Renewable Carbon, University of Tennessee, Knoxville, TN 37996-2200 USA ; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee, Knoxville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wyman, Charles E" sort="Wyman, Charles E" uniqKey="Wyman C" first="Charles E" last="Wyman">Charles E. Wyman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92507 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California, Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92507 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California, Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biotechnology for biofuels</title>
<idno type="ISSN">1754-6834</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Woody biomass is highly recalcitrant to enzymatic sugar release and often requires significant size reduction and severe pretreatments to achieve economically viable sugar yields in biological production of sustainable fuels and chemicals. However, because mechanical size reduction of woody biomass can consume significant amounts of energy, it is desirable to minimize size reduction and instead pretreat larger wood chips prior to biological conversion. To date, however, most laboratory research has been performed on materials that are significantly smaller than applicable in a commercial setting. As a result, there is a limited understanding of the effects that larger biomass particle size has on the effectiveness of steam explosion pretreatment and subsequent enzymatic hydrolysis of wood chips.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>To address these concerns, novel downscaled analysis and high throughput pretreatment and hydrolysis (HTPH) were applied to examine whether differences exist in the composition and digestibility within a single pretreated wood chip due to heterogeneous pretreatment across its thickness. Heat transfer modeling, Simons' stain testing, magnetic resonance imaging (MRI), and scanning electron microscopy (SEM) were applied to probe the effects of pretreatment within and between pretreated wood samples to shed light on potential causes of variation, pointing to enzyme accessibility (i.e., pore size) distribution being a key factor dictating enzyme digestibility in these samples. Application of these techniques demonstrated that the effectiveness of pretreatment of Populus tremuloides can vary substantially over the chip thickness at short pretreatment times, resulting in spatial digestibility effects and overall lower sugar yields in subsequent enzymatic hydrolysis.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>These results indicate that rapid decompression pretreatments (e.g., steam explosion) that specifically alter accessibility at lower temperature conditions are well suited for larger wood chips due to the non-uniformity in temperature and digestibility profiles that can result from high temperature and short pretreatment times. Furthermore, this study also demonstrated that wood chips were hydrated primarily through the natural pore structure during pretreatment, suggesting that preserving the natural grain and transport systems in wood during storage and chipping processes could likely promote pretreatment efficacy and uniformity.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">26664502</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1754-6834</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>Biotechnology for biofuels</Title>
<ISOAbbreviation>Biotechnol Biofuels</ISOAbbreviation>
</Journal>
<ArticleTitle>How chip size impacts steam pretreatment effectiveness for biological conversion of poplar wood into fermentable sugars.</ArticleTitle>
<Pagination>
<MedlinePgn>209</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s13068-015-0373-1</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Woody biomass is highly recalcitrant to enzymatic sugar release and often requires significant size reduction and severe pretreatments to achieve economically viable sugar yields in biological production of sustainable fuels and chemicals. However, because mechanical size reduction of woody biomass can consume significant amounts of energy, it is desirable to minimize size reduction and instead pretreat larger wood chips prior to biological conversion. To date, however, most laboratory research has been performed on materials that are significantly smaller than applicable in a commercial setting. As a result, there is a limited understanding of the effects that larger biomass particle size has on the effectiveness of steam explosion pretreatment and subsequent enzymatic hydrolysis of wood chips.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">To address these concerns, novel downscaled analysis and high throughput pretreatment and hydrolysis (HTPH) were applied to examine whether differences exist in the composition and digestibility within a single pretreated wood chip due to heterogeneous pretreatment across its thickness. Heat transfer modeling, Simons' stain testing, magnetic resonance imaging (MRI), and scanning electron microscopy (SEM) were applied to probe the effects of pretreatment within and between pretreated wood samples to shed light on potential causes of variation, pointing to enzyme accessibility (i.e., pore size) distribution being a key factor dictating enzyme digestibility in these samples. Application of these techniques demonstrated that the effectiveness of pretreatment of Populus tremuloides can vary substantially over the chip thickness at short pretreatment times, resulting in spatial digestibility effects and overall lower sugar yields in subsequent enzymatic hydrolysis.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">These results indicate that rapid decompression pretreatments (e.g., steam explosion) that specifically alter accessibility at lower temperature conditions are well suited for larger wood chips due to the non-uniformity in temperature and digestibility profiles that can result from high temperature and short pretreatment times. Furthermore, this study also demonstrated that wood chips were hydrated primarily through the natural pore structure during pretreatment, suggesting that preserving the natural grain and transport systems in wood during storage and chipping processes could likely promote pretreatment efficacy and uniformity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>DeMartini</LastName>
<ForeName>Jaclyn D</ForeName>
<Initials>JD</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92507 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California, Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; DuPont Industrial Biosciences, 925 Page Mill Road, Palo Alto, CA 94303 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Foston</LastName>
<ForeName>Marcus</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, 500 10th St., Atlanta, GA 30332 USA ; Department of Energy, Environmental and Chemical Engineering, Washington University, 1 Brookings Drive, Saint Louis, MO 63130 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Meng</LastName>
<ForeName>Xianzhi</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, 500 10th St., Atlanta, GA 30332 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jung</LastName>
<ForeName>Seokwon</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, 500 10th St., Atlanta, GA 30332 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kumar</LastName>
<ForeName>Rajeev</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92507 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California, Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ragauskas</LastName>
<ForeName>Arthur J</ForeName>
<Initials>AJ</Initials>
<AffiliationInfo>
<Affiliation>BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; Department of Chemical and Biomolecular Engineering, Center for Renewable Carbon, University of Tennessee, Knoxville, TN 37996-2200 USA ; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee, Knoxville, TN 37996-2200 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wyman</LastName>
<ForeName>Charles E</ForeName>
<Initials>CE</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92507 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California, Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>12</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biotechnol Biofuels</MedlineTA>
<NlmUniqueID>101316935</NlmUniqueID>
<ISSNLinking>1754-6834</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Biofuels</Keyword>
<Keyword MajorTopicYN="N">Digestibility</Keyword>
<Keyword MajorTopicYN="N">Enzymes</Keyword>
<Keyword MajorTopicYN="N">Particle size</Keyword>
<Keyword MajorTopicYN="N">Pretreatment</Keyword>
<Keyword MajorTopicYN="N">Wood chip</Keyword>
<Keyword MajorTopicYN="N">Woody biomass</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>09</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>11</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26664502</ArticleId>
<ArticleId IdType="doi">10.1186/s13068-015-0373-1</ArticleId>
<ArticleId IdType="pii">373</ArticleId>
<ArticleId IdType="pmc">PMC4673720</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biotechnol Bioeng. 2010 Feb 1;105(2):231-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19731251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2008 Sep-Oct;24(5):1178-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19194930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2005 Spring;121-124:163-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2007 Sep 1;98(1):112-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17335064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Apr;101(8):2782-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20006490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2000 Spring;84-86:5-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10849776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2011 Feb;108(2):306-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20830680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2004 Apr 5;86(1):88-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15007845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2008 Dec 1;101(5):913-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18781690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Dec;101(24):9624-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20708404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2011 Jan;102(2):1352-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20943384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2000 Spring;84-86:97-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10849782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2003 Spring;105 -108:87-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12721477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Magn Reson. 1999 Jul;139(1):18-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10388580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Magn Reson. 2003 Apr;161(2):204-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12713971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2004 Feb 20;85(4):413-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14755559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Magn Reson Imaging. 1994;12(7):1047-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7997092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2011 Nov 15;4:52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22085451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2007 Jul;25(7):759-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17572667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2011 Aug;164(8):1405-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21442289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2001 Nov-Dec;17(6):1049-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11735439</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>Géorgie (États-Unis)</li>
<li>Missouri (État)</li>
<li>Tennessee</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Demartini, Jaclyn D" sort="Demartini, Jaclyn D" uniqKey="Demartini J" first="Jaclyn D" last="Demartini">Jaclyn D. Demartini</name>
</region>
<name sortKey="Foston, Marcus" sort="Foston, Marcus" uniqKey="Foston M" first="Marcus" last="Foston">Marcus Foston</name>
<name sortKey="Jung, Seokwon" sort="Jung, Seokwon" uniqKey="Jung S" first="Seokwon" last="Jung">Seokwon Jung</name>
<name sortKey="Kumar, Rajeev" sort="Kumar, Rajeev" uniqKey="Kumar R" first="Rajeev" last="Kumar">Rajeev Kumar</name>
<name sortKey="Meng, Xianzhi" sort="Meng, Xianzhi" uniqKey="Meng X" first="Xianzhi" last="Meng">Xianzhi Meng</name>
<name sortKey="Ragauskas, Arthur J" sort="Ragauskas, Arthur J" uniqKey="Ragauskas A" first="Arthur J" last="Ragauskas">Arthur J. Ragauskas</name>
<name sortKey="Wyman, Charles E" sort="Wyman, Charles E" uniqKey="Wyman C" first="Charles E" last="Wyman">Charles E. Wyman</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D08 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001D08 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26664502
   |texte=   How chip size impacts steam pretreatment effectiveness for biological conversion of poplar wood into fermentable sugars.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26664502" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020